1. 选择并发模型
根据任务类型选择合适的何管模型:
推荐:Python中采用`asyncio`与`aiohttp`实现异步下载,个下高效且资源占用少。载任
2. 任务队列管理
创建待下载任务队列,处理动态添加任务:
python
tasks = [
(" "file1.zip"),下载
(" "file2.jpg"),
更多任务...
3. 控制并发数
使用信号量(Semaphore)限制同时运行的任务数,防止资源过载。请求
4. 实现异步下载函数
使用`aiohttp`分块下载并写入文件,何管减少内存占用:
python
import aiohttp
import asyncio
async def download_file(session,理多 url, save_path, sem):
async with sem: 限制并发
try:
async with session.get(url) as response:
with open(save_path, 'wb') as f:
async for chunk in response.content.iter_chunked(8192):
f.write(chunk)
print(f"下载成功:{ save_path}")
return True
except Exception as e:
print(f"下载失败 { url}: { e}")
return False
5. 创建主异步任务
管理所有下载任务,并控制并发:
python
async def main:
sem = asyncio.Semaphore(5) 同时最多5个下载
async with aiohttp.ClientSession as session:
download_tasks = [
download_file(session,个下 url, path, sem)
for url, path in tasks
results = await asyncio.gather(download_tasks, return_exceptions=True)
处理结果,统计成功/失败
success = sum(1 for res in results if res is 载任True)
print(f"完成,成功{ success}个,处理失败{ len(results)-success}个")
if __name__ == "__main__":
asyncio.run(main)
6. 错误处理与重试
添加重试机制,下载例如失败后重试3次:
python
async def download_with_retry(session,请求 url, path, sem, retries=3):
for _ in range(retries):
success = await download_file(session, url, path, sem)
if success:
return True
print(f"重试中 ({ url})...")
return False
7. 进度跟踪(可选)
在写入文件时记录已下载大小:
python
async def download_file(session, url, save_path, sem):
async with sem:
try:
async with session.get(url) as response:
total_size = int(response.headers.get('content-length', 0))
downloaded = 0
with open(save_path, 'wb') as f:
async for chunk in response.content.iter_chunked(8192):
f.write(chunk)
downloaded += len(chunk)
更新进度:计算百分比等
print(f"{ save_path}: { downloaded}/{ total_size} bytes")
return True
except Exception as e:
return False
关键点总结
此方案通过异步非阻塞调用显著提升下载效率,合理管理系统资源,适用于需要同时处理数十甚至数百个下载任务的场景。